Continuous Time Full-Feedforward MASH 2-2 Architecture for Sigma-Delta Modulators

Dr Walter José Lancioni

CATÓLICA DE CÓRDOBA Universidad Iesuita UMONS Université de Mons

Agenda

- Breve reseña sobre el conversor Analógico/Digital $\Sigma\Delta$ de Tiempo Continuo (Tc)
- Estrategia de Diseño
- Esquema del modulador ΣΔ MASH (Multi-stAge noise SHaping) 2-2 en Tiempo Discreto (TD)
- Transformación de TD a TC
- Esquemático del modulador propuesto CT ΣΔ MASH 2-2
- Resultado de simulación
- Estrategia de Test
- Conclusiones

¿Porque usar Moduladores CT MASH Feedforward?

- El uso de moduladores $\Sigma\Delta$ en cascada (MASH) es conveniente debido a su estabilidad intrínseca cuando se pretenden moduladores de alto orden.
- TC tiene ventajas sobre las implementaciones de TD, como su filtrado antialiasing implícito.
- Menor consumo de energía para el mismo ancho de banda.
- Debido a que en los moduladores de TC todas las señales están representadas por formas de onda analógicas de tiempo continuo, las restricciones de velocidad de los OTA se relajan drásticamente.

Estrategia de Diseño

- En el pasado, la mayoría de los enfoques del modulador $\Sigma\Delta$ se centraban en implementaciones de TD.
- Se han presentado una gran cantidad de herramientas de software para TD.
- Por lo tanto, tiene sentido comenzar el diseño a partir de la síntesis de alto nivel de una arquitectura de TD hasta obtener el rendimiento requerido y luego aplicar una transformación a TC.
- También es importante determinar sus correspondientes filtros de cancelación digital, ya que son los mismos filtros que se utilizarán en la versión TC.

DT Schematic of the proposed $\Sigma\Delta$ MASH 2-2

Digital cancelations filters

 $Y_{1} = X + E_{n1}(1 - Z^{-1})^{2}$ $W_{1} = X + Z^{-1}(Z^{-1} - 2) \cdot E_{n1}$ $(Y_{1} - W_{1}) \cdot a = E_{n1} \cdot a$ $Y_{2} = a \cdot E_{n1} + Z^{-1}(Z^{-1} - 2)^{2} E_{n2}$ $Y = Y_{1} \cdot DCF1 - \frac{Y_{2}}{a} \cdot DCF2$ $DCF1 = 1 \qquad DCF2 = (1 - Z^{-1})^{2}$ $Y = X - \frac{(1 - Z^{-1})^{4}}{a} \cdot E_{n2}$

	TABLE I							
OPTIMAL SIMULATED DISCRETE TIME COEFFICIENTS								
$a_1 = 1$	$a_2 = 1$	$a_3 = 1$	$a_4 = 1$	<i>a</i> = 0.25				

~1 I	~ <u>~</u>	~~ <u>-</u>	~~ <u>4</u>	a 0.10
<i>c</i> ₁ = 2	<i>c</i> ₂ = 2	b = 1	<i>g</i> = 1	

DT architecture performance

Matlab, Simulink, SIMSIDES -10.5 dB @ 1kHz input signal Sample rate of 1Msamples/s $N=2^{18}$ points FFT SFDR =159 dB que corresponde a 26 bits de precisión

Conversión de TD a TC

Transformación invariante de impulso

Los filtros tienen que cumplir:

$$Z^{-1}{H(z)} = L^{-1}{R_{DAC}(s)H(s)}|_{t=nT_s}$$

Donde $R_{DAC}(s)$ es la transformada de Laplace de la respuesta al impulso del DAC para un impulso NRZ (Non Return to Zero).

Funciones de transferencia en TD de los filtros de bucle

Del modulador en TD se obtienen las funciones de transferencia para cada LFi:

$$LF_1\Big|_{DT}(z) = \frac{W_1}{Y_1} = -\frac{a_1a_2}{(z-1)^2} - \frac{a_1c_1}{(z-1)}$$

$$LF_2\Big|_{DT}(z) = \frac{W_2}{Y_2} = -\frac{a_3a_4}{(z-1)^2} - \frac{a_3c_3}{(z-1)^2}$$

$$LF_{12}\Big|_{DT} = \frac{W_2}{Y_1}$$

= $a\left[\frac{a_1a_2a_3a_4g}{(z-1)^4} + \frac{a_1a_3g(a_2c_3 + a_4c_1)}{(z-1)^3} + \frac{a_1g(a_2 + a_3c_1c_3) + a_3a_4b}{(z-1)^2} + \frac{a_1c_1g + a_3c_3b}{(z-1)} + b\right]$

8

Equivalencia en TC para los polos de primer a cuarto orden en TD usando como realimentación un DAC de pulso rectangular

$\mathcal{Z} ext{-domain}$	\mathcal{S} -domain equivalents with $f_{\rm S}$ (Hz) = $1/T_{\rm S}$
$\frac{1}{(z-1)}$	$\frac{w_0}{s}, w_0 = \frac{f_{\rm S}}{\beta - \alpha}$
$\frac{1}{(z-1)^2}$	$\frac{w_1 s + w_0}{s^2}, w_0 = \frac{f_{\rm S}^2}{\beta - \alpha}, w_1 = \frac{1}{2} \frac{f_{\rm S}(\alpha + \beta - 2)}{\beta - \alpha}$
$\frac{1}{(z-1)^3}$	$\frac{w_2 s^2 + w_1 s + w_0}{s^3}, w_0 = \frac{f_{\rm S}^3}{\beta - \alpha}, w_1 = \frac{1}{2} \frac{f_{\rm S}^2(\alpha + \beta - 3)}{\beta - \alpha},$
	$w_{2} = \frac{1}{12} \frac{f_{S}[\beta(\beta - 9) + \alpha(\alpha - 9) + 4\alpha\beta + 12]}{\beta - \alpha}$
$\frac{1}{(z-1)^4}$	$\frac{w_3 s^3 + w_2 s^2 + w_1 s + w_0}{s^4}, w_0 = \frac{f_{\rm S}^4}{\beta - \alpha}, w_1 = \frac{f_{\rm S}^3}{2} \frac{\beta + \alpha - 4}{\beta - \alpha},$
	$w_{2} = \frac{f_{\rm S}^{2}}{12} \frac{(\beta - \alpha)^{2} + 2\beta\alpha - 12(\beta + \alpha) + 22}{\beta - \alpha},$
	$w_{3} = \frac{f_{\rm S}}{12} \frac{\beta^{2}(\alpha - 2) + \alpha^{2}(\beta - 2) - 8\alpha\beta + 11(\beta + \alpha) - 12}{\beta - \alpha}$

Funciones de transferencias convertidas de TD a TC

$$LF_1\Big|_{DT-CT}(s) \stackrel{NRZ}{=} -\frac{f_s^2}{s^2} - \frac{3}{2}\frac{f_s}{s}$$

$$LF_2\Big|_{DT-CT}(s) \stackrel{NRZ}{=} -\frac{f_s^2}{s^2} - \frac{3}{2}\frac{f_s}{s}$$

$$LF_{12}\Big|_{DT-CT}(s) \stackrel{NRZ}{=} \frac{1}{4}\frac{f_s^4}{s^4} + \frac{5}{8}\frac{f_s^3}{s^3} + \frac{35}{48}\frac{f_s^2}{s^2} + \frac{25}{48}\frac{f_s}{s} + \frac{1}{4}$$

Esquema de la arquitectura CT ΣΔ MASH 2-2 propuesta

Funciones de transferencia en TC

$$LF_{1}\Big|_{CT}(s) = \frac{W_{1}}{Y_{1}} = -K_{1}K_{a}K_{o}\frac{f_{s}^{2}}{s^{2}} - K_{1}K_{a}K_{6}\frac{f_{s}}{s}$$
$$LF_{2}\Big|_{CT}(s) = \frac{W_{2}}{Y_{2}} = -K_{5}K_{b}K_{p}\frac{f_{s}^{2}}{s^{2}} - K_{5}K_{7}K_{b}\frac{f_{s}}{s}$$

$$\begin{split} & LF_{12} \Big|_{CT} (s) \frac{W_2}{Y_1} \\ &= -K_a K_b K_o K_p K_1 K_2 \frac{f_s^4}{s^4} \\ &+ \left(K_a K_b K_p K_1 K_2 K_6 + K_a K_b K_o K_1 K_2 K_7 - K_a K_o K_1 K_3 K_p \right) \frac{f_s^3}{s^3} \\ &+ \left(K_a K_b K_1 K_2 K_6 K_7 + K_a K_o K_1 K_2 + K_b K_8 K_p - K_a K_p K_1 K_3 K_6 \right) \frac{f_s^2}{s^2} \\ &+ \left(K_a K_1 K_2 K_6 + K_b K_7 K_8 - K_4 K_p \right) \frac{f_s}{s} + K_8 \end{split}$$

Coeficientes para TC calculados

Los coeficientes de TC se pueden obtener igualando las funciones de transferencias convertidas de TD a TC con las funciones de transferencia de TC

K ₀ =4/3	$K_1 = 3/4$	$K_2 = 0.505$	$K_3 = 0.296$	<i>K</i> ₄ =1	$K_5 =$	1.02	$K_6 = 2$
K ₇ =2	$K_8 = 1/4$	K ₉ =4	$K_a = 1$	$K_b = 0.373$		$K_p = 4$	4/3

COEFICIENTES DE TIEMPO CONTINUO CALCULADOS

Optimización de los Coeficientes de TC utilizando SIMULIK y SIMSIDES

Resultados de Simulación

- 8.7 dB @ 763Hz input signal Sample rate of 1Msamples/s OSR = 64 $N= 2^{18}$ points FFT SFDR =158.7 dB

Similar a la versión en TD

Resultados de Simulación (cont.)

Simulación de la relación señal ruido (SNR) en función de la amplitud de la señal de entrada (Vin).

OSR=128, N= 2^{16} = points, fs = 1 MHz fin = 763Hz DR = 138.2 dB SNR = 134.4 dB

Esto corresponde a un modulador con una precisión de 22-bit.

Estrategia de prueba

En general existen dos enfoques para la prueba o "testing" de circuitos ADC:

- Uno de ellos depende de tener lugares o puntos de prueba en diferentes partes del circuito.
- El segundo, llamado BIST (Built in Self Test) consiste en integrar en el dispositivo todos los circuitos necesarios para el proceso de prueba.

Arquitectura feedforward de Segundo orden de TC

La frecuencia de oscilación depende del primer integrador:

 $Fosc = gm_4 / C_1$

Con $gm_4 = 62 \text{ nS y } C_1 = 5pF$ la frecuencia de oscilación resulta ser approximadamente 12.5 kHz.

DIAGRAMA ESQUEMÁTICO en ORCAD del Modulador feedforward de 2do orden

Formas de onda de oscilación a las salidas de los integradores

Esquema a nivel transistor del transconductor empleado

Lista de fallas inyectadas y resultados obtenidos

	Short C	ircuits		Open Circuits			
Fault	fosc [Hz]	$\Delta \mathbf{f}/\mathbf{f}$	Condition	Fault	Fosc[Hz]	$\Delta \mathbf{f}/\mathbf{f}$	Condition
VDD-N13	no osc.		Detected	Source M6	no osc.		Detected
N14 - N13	no osc.		Detected	Source M1	12325	2,71%	Undetected
N11 - N13	12170	1,42%	Undetected	Source M2	12165	1,38%	Undetected
N5 - GND	no osc.		Detected	Drain M9	10333	-13,89%	Detected
N5 - N6	no osc.		Detetcted	Source M13	no osc.		Detected
N6 - N8	10846	-9,62%	Detected	Drain M14	8982	-25,15%	Detected
N9-N15	no osc.		Detected	Drain M10	3783	-68,48%	Detected
N11 - N14	no osc.		Detected	Drain M12	noosc.		Detected
N14 - NB	no osc.		Detected	Drain M2	noosc.		Detected
N10 - NB	no osc.		Detected	Drain M1	noosc.		Detected
N16 -GND	no osc.		Detected	Source M15	noosc.		Detected
N7-GND	no osc.		Detected	Source M12	no osc		Detected
N9-N7	no osc.		Detected	Drain M13	10869	-9,43%	Detected
N12-N14	no osc.		Detected				
N12-N13	no osc.		Detected				
N3 - N4	17620	46,8%	Detected				
N12-NB	12528	4,40%	Undetected				
N3 - N5	no osc.		Detected				
N16 - NB	12964	8,03%	Detected				
N1 - N3	no osc.		Detected				
N2 - N6	no osc.		Detected				
N1 - N6	no osc.		Detected				
N10 - N16	no osc.		Detected				
N7 - N5	11597	-3,36%	Undetected				
N6 - N8	10850	-9,58%	Detected				
N13-N9	no osc.		Detected				

De un total de 39 fallas inyectadas (26 SC and 13 OC)...

Solo 5 no se detectan.

Esto da un factor de cobertura de:

87.17%

Conclusiones

- Las principales ventajas de las arquitecturas MASH feedforward de TC es la alta precisión y la estabilidad incondicional que no es afectada como en otros moduladores de alto orden.
- El filtro "anti-aliasing" inherente.
- Las restricciones de velocidad de los OTAs se relajan drásticamente. En teoría, para la misma tecnología, el modulador de TC podría sincronizarse un orden de magnitud más rápido que sus contrapartes de TD.

Conclusiones (cont.)

- Las excursiones de voltajes reducidos requeridos a la entrada y salida de los integradores.
- Las excursiones de voltajes reducidos requeridos a la entrada y salida de los integradores.
- Esto último los hace adecuados para operaciones por debajo de 1 Volt.

